Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Cancer Biotherapy ; (6): 232-238, 2021.
Article in Chinese | WPRIM | ID: wpr-876049

ABSTRACT

@#[Abstract] Objective: To explore the anti-tumor activity of MUC16-targeted chimeric antigen receptor modified NK-92 (CARNK-92) cells against ovarian cancer. Methods: The expression of MUC16 in surgically resected tumor tissues of 15 patients with ovarian cancer treated in the Department of Obstetrics and Gynecology of Qingyang Hospital of Traditional Chinese Medicine and 4 ovarian tumor cell lines was detected by Immunohistochemistry and Flow cytometry. MUC CAR sequence was synthesized by gene synthesis, and its lentivirus expression vector were constructed. CARNK-92 cells targeting MUC16 (MUC-BBz) were obtained by lentivirus infection. The expression of CD107a in MUC-BBz was detected by Flow cytometry. The activation of MUC-BBz cells and its cytotoxicity against SKOV3 target cells were characterized by the release of LDH assay. The xenograft nude mouse model of SKOV3 cells was established to verify the in vivo anti-tumor activity of MUC-BBz cells. Results: MUC16 was highly expressed in ovarian cancer tissues and human ovarian cancer cells. MUC-BBz was successfully constructed by infecting NK-92 cells with lentivirus, with a positive rate of (42.79±2.58)%. MUC-BBz could be specifically activated by MUC16 over-expressing tumor cells. After co-incubation of effector cells and target cells, the expression of CD107a on MUC-BBz was upregulated significantly (P<0.01), and the ability of MUC-BBz secreting cytokines IFN-γ and perforin also increased (all P<0.01). The LDH test indicated that with the increase of effector-target ratio, the cytotoxicity of MUC-BBz against 4 ovarian cancer cells (hey, COC1, SKOV3 and A2780) also significantly enhanced. The results of transplanted tumor model showed that transfusion of MUC-BBz could significantly inhibit the growth of SKOV3 xenograft in mice (P<0.01). Conclusion: The CARNK-92 cells can significantly inhibit the growth of ovarian cancer cells in vitro and in vivo, which provides an important basis for further evaluation of its clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL